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In this work, we present a compactly supported radial basis function (CSRBF) based meshfree method to analyse
geometrically nonlinear flexoelectric nanostructures considering surface effects. Flexoelectricity is the polariza-
tion of dielectric materials due to the gradient of strain, which is different from piezoelectricity in which po-
larization is dependent linearly on strain. The surface effects gain prominence as the size of the structure tends

to nanoscale and so their consideration is inevitable when flexoelectric nanostructures are analysed. First, the
proposed meshfree formulation is validated and the influence of nonlinear strain terms on the energy conver-
sion ability of flexoelectric beams made of a non-piezoelectric material like cubic Strontium Titanate is studied.
Subsequently, the meshfree formulation for nonlinear flexoelectricity is extended to include nonlinear surface
effects. It is determined that the surface effects can have notable influence on the output flexoelectric voltage of
nano-sized cantilever structures in the nonlinear regime.

1. Introduction

Flexoelectricity is the generation of electric polarization under me-
chanical strain gradient or mechanical deformation due to electric
field gradient (converse flexo). It is a more general phenomenon than
the linear change in polarization due to stress, known as the piezo-
electric effect. Flexoelectric polarization is restricted not only to non-
centrosymmetric crystals eventually opening up possibilities for non-
toxic electromechanical materials for biomedical application.

Piezoelectricity can be characterised by a third rank tensor and is
observed only in non-centrosymmetric crystals (21 types). In contrast,
flexoelectricity can be mathematically defined by a fourth order ten-
sor and can be observed in materials of any symmetry (32). The reason
behind is that the homogeneous strain relies on lack of symmetry of ma-
terials for polarization, on the other hand, the strain gradient can break
the local centrosymmetry of materials inducing polarization. The strain
gradient scales with the size of specimen leading to the possibility of sig-
nificant flexoelectric effect at the length scale of nanometers. Piezoelec-
tricity exists only below Curie temperature, while flexoelectricity being
symmetry independent does not have a temperature constraint [1]. The
high energy conversion ability of piezoelectric materials makes them the
prominent constituent in several micro [2] and nano-sized [3] energy
harvesters developed. While, the recent researches show the possibil-

ity of an energy harvester made of non-piezoelectric materials exploit-
ing flexoelectricity [4]. Nanoelectromechanical systems like actuators
[5] are fabricated using non-piezoelectric materials like Strontium Ti-
tanate and are shown to produce curvature/electric field ratio of 3.33
MV~ comparable to the ratio of 5.2 MV ~! in piezoelectric Lead Zir-
conium Titanate bimorph. The flexoelectricity also offers the advantage
of choosing Lead-free materials as constituents in sensors, actuators and
energy harvesters.

The theory of flexoelectricity was first identified way back in the
1960s by Mashkevich and Tolpygo [6], followed later by the work of
Tagantsev [7] in which bulk and surface mechanisms that can cause
polarization due to strain gradient were determined. Meanwhile, Ko-
gan [8] made a theoretical estimate of the flexoelectric coefficient to
be of the order of e/a ~ 107°C/m, where e is the electronic charge and
a is the lattice parameter. The series of experimental works by Cross
and co-workers [9-11] sparked interest over the potential of flexoelec-
tric materials as a substitute to piezoelectric materials. These experi-
mental studies on ceramics with cubic symmetry like Barium Strontium
Titanate (BST) and Barium Titanate (BTO) revealed higher values of
peak flexoelectric coefficients in the range of 50 uC/m. Atomistically,
Maranganti et al. [12] determined the flexoelectric coefficients of sev-
eral ferroelectric and non-ferroelectric crystals. Though there is discrep-
ancy between theoretical and experimental flexoelectric coefficients of
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Barium Titanate (BTO), the theoretical estimations are of the same or-
der compared to the experimental results of Zubko et al. [13] for Stron-
tium Titanate (STO) crystals. Several works are available in literature
that presents analytically derived electro-elastic field for nanobeams and
nanowires having flexoelectric effect and surface effects [14-16]. Nev-
ertheless, the analytical solutions are applicable only to simplified one-
dimensional models and so numerical methods to analyse flexoelectric
structures are required.

Conventional finite element method (FEM) cannot be utilised for
analysing flexoelectric structures as the fourth order partial differen-
tial equations governing flexoelectricity necessitates C! continuity of
displacement field. Phase field modelling of flexoelectricity in an epi-
taxial thin film made of Barium Titanate is presented by Chen et al.
[17], followed by which analysis of a two phase system is performed
[18]. Meshfree shape functions offer the advantage of having higher or-
der continuity, making them a favourable class of numerical methods
to analyse flexoelectric structures. A numerical approach to analyse two
and three dimensional truncated pyramid shaped structure due to flex-
oelectricity utilising local maximum entropy (LME) meshfree method
is presented by Abdollahi et al. [19,20]. Ghasemi et al. [21] proposed
an IGA formulation exploiting the higher order continuity of NURBS
shape functions. In [22-24], mixed FE formulations are proposed for
analysis of two dimensional flexoelectric structures. Though the mixed
FE formulation requires only C° continuity, the number of nodal DOFs
required is much higher. For example, in the flexoelectric element pro-
posed in [22], degrees of freedom in the corner nodes are two displace-
ment DOFs, four displacement gradient DOFs, one electric potential DOF
and four Lagrange multiplier DOFs. It is to be noted that in the work of
Nanthakumar et al. [22] flexoelectric nanobeams with surface effects,
made of Barium Titanate, are analysed and optimized using the mixed
FE formulation. Also there are computational works available in litera-
ture that specifically analyse nanobeams with surface effects [25-27], in
which extended finite element method is the numerical method adopted.
The nonlinear electro-elasticity of soft dielectrics combined with flexo-
electricity is analysed by Yvonnet et al. [28], adopting finite element
discretization (C! Argyris triangular elements) and consistent lineariza-
tions. As a shortcoming the authors have stated that due to instability,
the utilised formulation could not simulate the entire nonlinear range.

Motivated by all these works on flexoelectricity, in the present work,
a compactly supported radial basis function (CSRBF) based meshfree for-
mulation is proposed to analyse flexoelectric beams subjected to large
deformation considering surface effects. Though there are works avail-
able in literature on analysing flexoelectric structures using a meshfree
method [19,20], to the best of our knowledge this is the first work on a
meshfree formulation to handle nonlinearity in flexoelectric nanostruc-
tures accounting for surface effects. The meshfree shape functions with
higher order continuity are advantageous compared to complex mixed
FE [22] formulations, mainly because the meshfree formulation requires
the discretization of ’only’ displacement and electric potential fields.

The outline of the paper is as follows: Section 2 presents the gov-
erning equations of flexoelectricity. Section 3 describes the meshfree
formulation for flexoelectricity including surface elasticity and surface
piezoelectricity. Linearization of the weak form and subsequent mesh-
free discretization is shown in Section 4. Finally, numerical examples on
analysis of two-dimensional flexoelectric structures with surface effects
considering geometric nonlinearity are presented in Section 5.

2. Governing equations of flexoelectricity with surface effects

The mathematical modeling of flexoelectricity is based on the ex-
tended linear theory of piezoelectricity with additional strain gradient
terms. A general internal energy density function, U involving strain
energy, electrostatic energy and terms including strain gradient is pre-
sented by Shen et al. [29]. The internal energy density function, U is as
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follows,

U=U,+U;
Ub=%fiCZE—E'eIE—El'ﬂfn—%E-K'E+%ﬂiglifl
US=USO+rs:es+a)’~Es+§es:CS:es—E5~es:es—§Es~Ks‘Es

()]

where Uy and U; are the bulk and surface energy density functions re-
spectively. Uy, is the surface free energy density. ¢ is the linear strain
tensor, E is the electric field tensor, £* and E* are their corresponding
surface counterparts. 73 and w; are the residual surface stress and resid-
ual surface electric displacements respectively. 5 is the strain gradient
tensor. C and C* are the fourth order bulk and surface stiffness ten-
sors, e and e° are the third order bulk and surface piezoelectric cou-
pling tensors, x and x* are the bulk and surface dielectric permittivity
tensors respectively. g is the sixth order strain gradient elasticity ten-
sor. u is the fourth order flexoelectric tensor which represents combina-
tion of (a) strain-polarization gradient coupling and (b) strain gradient-
polarization coupling.

The physical stress, o and electric displacement, D can be obtained
from the bulk energy density function as,

Uy _ (95 C E, + u;uE )
= — — =C,..e, —e:; L —g..
0ijj dgij aﬂuk ) ijki€kl ijkEr T HijkiLrg = ijkimnMimnk
U,
i = _0_E[ = eijk€jk T Hijki€jkg T Kij E; 3)

The surface mechanical stress, o° and surface electric displacement, D’
can be obtained from the surface energy density function as,

U,
s S _ 5 N 5 _ 8 s
o} = e = 7 +Cijk15k1 eijkEk “4)
1
aU,
s s s s .S S s
D’. —F = —w; + eijkejk + KijEj (5)

The total potential energy, Il can be written in terms of internal energy
in the bulk, ITy,, internal energy in the surface, IT; and work done by
external forces, I1,,; as,

= 1-[bulk + Hs - Hext (6)

where,

My = / U, dQ (O]
Q

I, = / U, dT ®)

r

ng,zfu-tdru+/u-bd9— ¢q dT, )

T, Q Ty

u

Here, u and ¢ denote mechanical displacement and electric potential
respectively. t is the surface traction on I'y, b is the prescribed body
force and q is the surface charge density on T'y. I, and T';, are the Neu-
mann boundary for mechanical displacement and electric potential re-
spectively.

The weak form of the equilibrium equations can be obtained by find-
ingue{u=u onI’ue HX Q}andpc{p=¢ onTl? ¢ec H(Q)}
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such that
SII=0=>

/e(éu) :C:g(n) dQ—/e(zSu) e E(¢)dQ

Q Q

- / E(65§) e ¢ e(w)dQ / 0w : u- E$)dQ
Q Q

—/E(5¢)'ll : 'I(U)dQ—/E(ﬁti’)‘K'E(tIJ)dQ
Q Q

+/ néu) : g : nw) dQ+/eS(5u) s 1%dl (10)
Q r

+/Es(§¢)<a)s dF+/£s(6u) :C¥ o ef(u)dl
r r

_/55(5u) :ef - ES(¢p)dl — /E‘(¢54))~es 1 e5(u)dl

r r

—/ES(5¢)-KJ~ES(¢)dr:/ su-tdT,
T T,

+/5uAbdQ—/ s qar,
Q T

¢

for all odue{éu=0 onl%sue H*Q)} and &€ {5¢p=
0 onI ;’5,5¢6H2(Q)}. I and T i are the Dirichlet boundary for

mechanical displacement and electric potential respectively.
3. Mesh free formulation for flexoelectricity

The numerical discretization of the governing partial differential
equations of flexoelectricity requires C! continuous basis functions for a
Galerkin method. In the present work, we utilize a meshfree method
with compactly supported radial basis function (CSRBF) shape func-
tions. Popular radial basis functions [30] include the Multi-Quadrics,
Gaussian and Thin Plate Splines. These radial basis functions are glob-
ally supported and their accuracy highly depends on the condition num-
ber of the collocation matrix. However, the collocation matrix will be
a sparse matrix, well conditioned and compactly supported if we adopt
CSRBF shape functions. The Wendland type CSRBFs with G2 continuity
proposed in [31] is,

fx,y) =max {0,(1-n*}@r+1) € C? 11
where r(x, y) is given by,
V(x = x)? + (y—y,)?

R

d;
ri(x,y) = e (12)
where d; is the distance of a point of interest (x, y) from a knot at (x;,
¥;). The dimension of support domain, R is given by R = ad,, where «
is the shape parameter and d, is the average nodal spacing. It is to be
noted that the value of r; lies between 0 and 1.

An approximation for a general function can be written as
W)= fT@a+p )b (13)

where f(x) and a denote the vector of CSRBF and expansion coefficients
respectively,

TG = 1), L), .. f(0)] 14

15)

In Egs. (14) and (15), the variable n stands for the number of nodes in
the support domain of the point of interest. Here, p(x) and b are the
vector of polynomial basis functions and coefficients respectively,

T
a =|ay,a,,...q,].

PT ) =[p1(®), pr(%), ... pp(0)] (16)

bT = [b, by, ... b,]. 17)

In Egs. (16) and (17), the variable m stands for the number of terms of
polynomial basis. The coefficient vectors a and b can be obtained by
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solving the following algebraic equations

Gy =10

where U is a vector of nodal values of function u”(x) and matrices A and
P, are,

A
T
Pm

P,

m

0 U

0

a

b 18)

Sixp) Fux1)

A=| : : 19
f1(xy) Fulxy)
p1(x1) Pm(%1)

P,=| o (20)
pl(xn) Pm(xn)

From Eq. (13), interpolation of the nodal function values, U, at any point
of interest, x can be written as,

ux) = [fT(x) S, +pT(®) S,1 U
= Nx)U 21)

As a result, the meshfree CSRBF based shape function, N (x) is given by,

N@ = fTx) S, +p" @) S, (22)

where S, = A7Y[1-P, S;land S, = [PT A1 P, "' PT AL

The polynomial basis functions of linear order are added to the radial
basis functions in order to ensure that the shape functions possess C!
consistency. The vector p(x) given in Eq. (16) can be rewritten such that

m =3 as,
P () =[1xyl] (23)

The discrete form of Eq. (10) can be written as a system of algebraic
equations as follows,

K, +K;, K, + K: A [u] _ F,+F} o4
- S
K¢,,+K;u K¢¢+K;s¢ ¢ Fy + F,

where K, and K, are the bulk and surface mechanical stiffness coeffi-
cients. K4 and K, are the bulk and surface electro-mechanical stiffness
coefficients. K,, and K3, are the bulk and surface electrical stiffness
coefficients. F, and F, are the external bulk mechanical and electrical
loads. F! and F; are the external loads due to residual surface stress and
residual surface electric displacements respectively.

K, = /BMTCBudQ+/HuTgHudQ
Q Q
Ky = /QBuTeTB(I,dQ+/QH,,TyTB¢dQ:K¢uT
— T
Kpp = — /Q B, kBydQ
_ T T
KS, = /F B,"M,"C*M,B,dT"
s _ T pT ,s _xs T
K, = /FB(,, P'e*M,B,dT = K}
s _ _ T pT ..s
K, = /FB¢ PTx* PB4dl
Ff = /BuTMpTr‘dr
r
s _ T pT .5
F, = /FBd, PTo*dT

F, = 6u/ NTidru+5u/NdeQ
r, Q

Fy = 8¢ /F NTqdr, 25)
¢
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where C, e, u, x and g are the matrix form of the tensors Cijk> €ijic> Hijkts
«yj and gijimn respectively and C*, €°, p° and x* are the matrix form of the

N S N S 1 1 1
tensors C,.j G M and‘ K} respectively. The gradient and Hessian
matrices in Eq. (25) are defined as follows,

Ny« 0
B,=| 0 Ny, (26)
NI,y Nl,x
By =-— [N ’*X] 27
Ny,
N],xx 0
0 Nyyx
Hu Zl,yx NE),xx (28)
I.xy
0 Niyy
Nl,yy Nl,xy

where I = 1,2 ... .n, n is the number of nodes in the support domain of
the point of interest and this number can be different for different points
of interest. The projection matrix is denoted as Mp

Pliz P Py
P, Py Py,

2
2P Py, 2P, Py P+ P Py

(29)

where the entries of Mp are from P, the tangential projection tensor
given by I — n ® n. Here, I refers to identity matrix of rank 2 and n is
the outward normal vector to the surface, I'.

Cuy Cp O
C=|Ch Cpn O
0 0 Cg
u= [Mll Hi2 0 0 0 Haa
0 0 pyy mp my O
0= [ 0 0 ‘315]
€31 €33 0
ST 0
£ [ 0 "22] G0
¢, C, O 0 0 0
¢, C, O 0 0 0
0 0 C, 0 0 0
2 66
g=1 (€2))]
°lo 0 0 ¢, C, 0
0 0 0 C, Cp O
0 0 0 0 0 Cg

In Eq. (31), the term [, is the length scale representing the size depen-
dency of strain gradient effects. The CSRBF based meshfree formulation
satisfies kronecker delta property which is advantageous compared to
other meshfree approximants [19] that require additional degrees of
freedom or special techniques [32] to impose displacement boundary
conditions.

4. Mesh free formulation for flexoelectricity including geometric
nonlinearity

In this section, the proposed meshfree formulation is extended to
handle geometric nonlinearities in flexoelectric structures considering
surface elasticity. The internal energy density in Eq. (1) can be written
based on constitutive Egs. (2)—(5), as:

U=%6’:e+%r£n—%D~E+%as €’ (32)
5= Wy U s — 9Us
where, 6 = = S , D= 5 and ¢* = o

In order to derive a formulation for large deformation, the nonlinear
strain terms need to included. The Green Lagrange strain tensor, G and
its gradient tensor, G are as follows:
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1
G Sy ug+uguy ;) (33)

ij:2

1
Gijk = E(ui,jk U Uy U i) (34)

Saint Venant-Kirchhoff material model is considered for flexoelectric
solids, the internal energy density given in Eq. (32) is modified as,

U:%S:G+ 1D~E+%SS:GS

SEG—2 (35)

=

where S is the second Piola-Kirchhoff tensor, S is the double stress tensor
and D is the electric displacement vector; S* is the second Piola-Kirchhoff
surface stress tensor; G is the Green Lagrange strain tensor and G is the
gradient of the Green Lagrange strain tensor; E is the electric field vector
and G* is the Green Lagrange surface strain tensor.

The total potential energy, II is given by,

H:/UdQ—/ uAtdFu—/u~bdQ+/ ¢q dT,,
Q T, Q r,

where u and ¢ are mechanical displacement and electric potential re-
spectively. t is the surface traction on I', b is the prescribed body force
and q is the surface charge density on I'y. I, and T, are the Neumann
boundary for mechanical displacement and electric potential respec-
tively.

The constitutive equations of the assumed Saint-Venant Kirchhoff
material model are as follows

(36)

§S=C:G-e-E
S=-u-E+g:G
D=e:G+u:G+x-E

(37

Taking the first variation of the total potential energy in Eq. (36) yields,

5H=/S:6GdQ+/§56C~¥dQ—/D~6EdQ+/Ss:6Gde
Q Q Q r

—/ 6u-tdFM—/6u-bdQ+/
T, Q T,

u 3

S¢qdT, =0 (38)

Each term in Eq. (38) has to be linearized. The final expression obtained
after linearizing each term in Eq. (38) are subsequently presented. The
intermediate steps are detailed in Appendix A. A total Lagrangian for-
mulation is presented such that all the integrals are performed on the
undeformed configuration and derivatives are with respect to the mate-
rial coordinates.

The linearization of the term /S: 6GdQ in Eq. (38) can be obtained
as

L[/S:SGdQ] =/SzaG'dQ+/A(s:aG)dQ
Q Q Q

/A(S 1 6G)dQ = /S : A(6G)d9+/5G ASdQ
Q Q Q

(39

:/S:A(éG)dQ+/EG:C:AGdQ
Q Q

—/5G:e~AEdQ
Q

/S : [(Voﬁu)T(Vo(Au))]dQ+/6G :C AGdQ

Q Q

—/ 6G : e - AEdQ. (40)
Q

The linearization of the term [, § : 6dQ in Eq. (38) can be derived
as follows,

L[/S‘E&Gdﬂ] =/§s§éd9+/A(§saé)dQ
Q Q Q

/ A(S i 8G)dQ = / S A(6GYdQ + / 6G 1 ASdQ
Q Q Q

“4n
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=/§EA(6é)dQ—/EGSy-AEdQ
Q Q
+ / 8G : g : AGdQ
Q
= / § 1 [(Vou)(VoAu) + (Vi Au)(Vy6u)ldQ
Q
—/aé;u-AEngr/éésgsAédQ (42)
Q Q

The linearization of the term [Q D - 8EdQ in Eq. (38) is as follows,
L [/ D. 6Ed§2] = / D -8EdQ + / A(D - 8E)dQ (43)
Q Q Q

/A(D -6E)dQ = /D -ASEdQ + / AD - 6EdQ
Q Q Q
=/5E-/4 : Aédsz+/6E~e 1 AGdQ
Q Q
+/ OE -x - AEdQ 44)
Q
The linearization of the term /-S%: 6G°dI" in Eq. (38) is as follows,
L[/ S rSGSdF] = /s's : 5GSdF+/A(SS 1 8G*)dT (45)
r r r
/A(S: 1 8G%)dll = /S‘ : A(6G:)dF+/6G‘ : AS*dDl’
r r Q
= /S’ : A(&Gs)dF+/6Gs : CS . AGPdT
r r
= / 8% 1 P-[(Vobu) (Vo(Aw)] - PdT
Q
+/6Gs . C : AG*dT (46)
r

The algebraic forms of Egs. (39),(41),(43) and (45) are as follows,

L[/ S : 5Gd9] = 6u</ BTRdQ> +6u</ BTC BdQ)Au
Q Q Q
+6u</ BTe B¢dQ>A¢+ 6u</ HlTRHldQ> Au
Q Q
47
S . ~ _ Tp T,T
L[/QS : 6Gdsz] = 6u</QHDRDdQ> +6u</QHD;4 B¢d9> A¢
+5u</ HggHDdQ> Au
Q
+6u</Q HlTRlT)szQ> Au

+6u< /9 HIR, H1d9> Au (48)

L[/D-&Edgz] = —5¢/B¢T1‘)dg - a¢(/ B¢TyHudQ> Au
Q Q Q

- 5¢</ B¢TeBdQ> Au + 5¢</ B;KBq,dQ) A
Q Q
(49)

L[/ S5 5GSdF] = 5u</BTMpTﬁsdr>
r r

+6u< / B"™M,"C* M, BdQ) Au
r

6u< /r H[ P! RsPnHldI“> Au (50)
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All the matrices involved in Egs. (47), (48), (49), (50) are presented in
Appendix B. The final algebraic form of linearization of Eq. (38) can be
written as,

KAU = Fex! — Fint (51)
where,
K K
K = [ uu u¢]
Kpu Ko
Au
AU = [ A ¢] (52)

K, = / BTCBdQ + / H[ RHdQ
Q Q

+/QH1TR£H2¢1Q+/QHZTRDHIdQ+/QH£gHDdQ

+ /F B"M,"C*M,Bdr + /r H[ P,R P, HdT (53)
Kyp = / BTe" BydQ + / H] u"BydQ = Ky," (54)
Q Q
— T
Kyp = —/QB’I)KB(,,dQ (55)

Fint — [Fu]
Fy

~
[

= /BTRdQ+/H£RDdQ+/BTMPTdeF
Q Q r
Fy = /Q B, DdQ (56)

The nonlinear Eq. (51) is solved by using the Newton-Raphson itera-
tive scheme. Solving this equation, gives the deflection and voltage re-
sponses of flexoelectric structures that undergo large deformations.

5. Numerical examples

In this section, the proposed meshfree formulation is utilised to anal-
yse flexoelectric cantilever beams accounting for surface effects and also
to study the influence of geometric nonlinearity on their voltage output.
As an initial step, the meshfree formulation is validated by determining
the energy conversion factor (ECF) of a cantilever beam. The ECF is
given by the ratio between stored electrical energy and mechanical en-
ergy in the flexoelectric structure.

0.12 [ : : :

—— Analytical
©—Meshfree

0.1
0.08
LL
O 0.06
L
0.04

0.02

.

T

20 40 60 80 100
Depth of beam, d in nm

Fig. 1. The variation of ECF, k? with beam depth for a one dimensional beam
model.
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-8+
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-8.2 : '
3.4 3.5 3.6

3.7
log 10h

Fig. 2. The Error norm of ECF for a one dimensional beam model.

5.1. Validation: ECF

A cantilever beam subjected to a mechanical point load at the free
end is analysed in order to validate the proposed meshfree formulation.
The cantilever beam has an aspect ratio of 6. The Young’s modulus, Y is
assumed to be 100 GPa. For validation, only the flexoelectric constant
p1o and dielectric constant k,, are considered non-zero and they are as-
sumed to be 10 nC/m and 1 nC/Vm respectively. The beam is discretized
by 121 x 21 nodes with uniform spacing and the background mesh for
numerical integration is 120 x 20. The variation of the energy conver-
sion factor (ECF) with decreasing depth of the 1D flexoelectric beam is

x10*
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shown in Fig. 1. The figure shows good agreement between the numeri-
cal and analytical k? values. The analytical energy conversion factor, k2
for a 1D model is given in [34] as,

ECF¥ = | = A lﬂ(ﬁ)z
kY \d

The Fig. 2 shows the error in ECF (= |[ECF® — ECF""|), which is the
difference between numerically determined ECF using the CSRBF shape
functions and the analytical ECF, with the average nodal spacing, h.
The convergence rate shown in Fig. 2, is for CSRBF shape function with
shape parameter, « of 1.5 and the number of Gauss points utilised for
numerical integration is 4 x 4 in each background cell.

(67

5.2. Validation: tube model

In order to further validate the proposed formulation, a flexoelectric
tube made of STO is analysed with plane strain assumption. The tube
with an inner radius, r; of 10 pm and outer radius, r, of 20 um is sub-
jected to a radial displacement of 0.045 pm and 0.05 pm at r; and r,
respectively [23,24]. The tube is grounded along the inner face and a
voltage of 1 V is applied along the outer face. The nodal distribution of
the quarter model is as shown in Fig. 3(a). The distribution of electric
potential obtained for a length scale, I, of 2 pm is shown in Fig. 3(b). The
variation of electric potential along the thickness of the tube is shown
in Fig. 3(c). The analytical results for the flexoelectric tube model with
assumed material parameters is derived by Mao et al. [23]. The results
presented in Fig. 3(c) shows good agreement between the analytical and
numerical results.

5.3. Pure flexoelectricity

A cantilever beam made of cubic STO is analysed in this section.
The material properties of STO is given in Table 1. The bottom and top

Fig. 3. (a) Nodal distribution for the quarter
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Table 1
Electromechanical properties of STO.
Elastic Constants Dielectric constants Flexoelectric constants [33]
C11=310 GPa k11=2.66 C/(GV —m)  p;; =-026nC/m
Ci,=115 GPa k33=2.66 C/(GV —m)  p;, =-=3.74nC/m
C,,=310 GPa Hyy = —3.56nC /m
Ces=54 GPa
-5
x10
3.5 T T T T
—1=0 nm
L
O
L

0.5 ' ' : ' '

40 50 60 70 80

depth of beam, nm

Fig. 5. The variation of ECF with depth of beam including and excluding strain
gradient tensor, g.

face of the beam are coated with electrodes. The bottom electrode is
grounded and the top electrode is free to have a potential value.

The dimension of the beam is 1200 x 100 nm. The beam is subjected
to a point load of 20 nN at the free end. The length scale, [, of g tensor
is taken as O (i.e.) g is not considered in this analysis. The beam has an
almost linear variation of potential along the beam depth as shown in
Fig. 4. The potential obtained at the top face is 34 mV. Now if we fix the
aspect ratio to be 12, and reduce the beam depth for instance to 40 nm,
then the potential at the top face is 85 mV. It can be seen from Fig. 6 that,
when the length scale is increased from 0 to 10 nm, the output voltage of
the 100 nm beam reduces from 34 mV to 32mV (6% reduction). While
for the same increase in length scale, the output voltage of the 40 nm
beam reduces from 85mV to 71 mV (15% reduction).

The change in energy conversion factor with depth of beam for an
aspect ratio of 12, excluding and including g tensor is shown in Fig. 5.
The energy conversion factor for 40 nm beam depth with and without
including g tensor are 3.1e-5 and 2.4e-5 respectively for a length scale of
10nm. The inclusion of strain gradient elasticity increases the stiffness
of the beam, reduces the voltage obtained and as a result reduces the
ECFs. Note that the difference between the energy conversion factors
with and without the g tensor increases with reduction in depth of the
beam.

5.4. Flexoelectricity and surface effects

In this section, we analyse a Zinc Oxide nano cantilever beam. The in-
terplay between piezoelectric, surface elastic, surface piezoelectric and
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Fig. 4. The potential distribution in a flexo-
electric beam made of STO.

1000

90 ' ' ' ' '

80

40

40 50 60 70 80 90

depth of beam, nm

100

Fig. 6. Output voltage for varying beam depths for internal length scales of
0,5,10 and 20 nm.

Table 2
Material properties of bulk ZnO.

Elastic Constants Piezoelectric constants Dielectric constants

C,,=206 GPa €3 = —0.58C/m? x1,=0.0811 C/(GV — m)
C,,=117 GPa e33=1.55 C/m? K33=0.112 C/(GV — m)
Cp,=211 GPa €15 = —0.48C/m?
Ces=44.3 GPa

Table 3

Material properties of ZnO surface.

Elastic Constants Piezoelectric constants

Ci =442 Njm ¢}, =—0216nC/m
C,=142 Njm  ¢},=0.451 nC/m
€5,=35 Njm ely = ~0253nC/m

C;,=11.7 Njm

flexoelectric effects is studied. Zinc Oxide is the ideal material for per-
forming this study because it is widely used in several nanoscale energy
harvesters [3,35] and studies on surface properties of Zinc Oxide [36] is
available.

The cantilever ZnO beam is of length, 120 nm and width, 15nm. A
point load of 10 nN is applied in x-direction at the mid-point of the top
face. The beam is fixed at the bottom and free at the top. The beam
is poled along the length (y-direction). The bottom end of the beam
is grounded. The elastic, piezoelectric, surface elastic and surface piezo-
electric properties of ZnO are given in Tables 2 and 3. The residual stress,
75 and residual electric displacement, ®® are not considered in the study.
The flexoelectric constant of ZnO, 11, 1, and 44 are assumed to be 2
nC/m, 2 nC/m and 0.5 nC/m respectively.

The potential distribution across the beam width is shown in Fig. 7.
The combination of bulk piezoelectricity and surface elastic effect results
in a potential of +1.18V to -1.18V at the top face. The combination of
bulk piezoelectricity and surface piezoelectric effect leads to a poten-
tial varying from +1.5V to -1.5V at the top face of the beam. Finally,
the combination of bulk piezoelectricity, bulk flexoelectricity, surface



X. Zhuang, S.S. Nanthakumar and T. Rabczuk

0 ) 120 .
115 P
- 100
11
0.5
80 105 =
0
0
> el > 60
05 o5
40 e '
-
20f i -1
-1.5
. 0
0 51015 0 5x1015
X
(a) (b)

Fig. 7. The potential distribution in the ZnO beam considering (a) Flexoelec-
tricity, piezoelectricity and surface effects, (b) Pure Flexoelectricity.
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Fig. 8. The variation of output voltage for ZnO beam with width for three cases,
Piezoelectricity, Piezoelectricity + surface effects and Piezoelectricity + Surface
effects + Flexoelectricity.

elasticity and surface piezoelectricity results in a potential of +1.7V
to -1.7V at the top face as shown in Fig. 7(a). The variation of electric
potential considering only flexoelectric effect is + 0.3V to -0.3V at the
top face (Fig. 7(b)). The relative influence of the different phenomenon
on the output voltage is shown in Fig. 8. The contribution of flexoelec-
tric effect to output voltage is higher compared to the contribution of
surface effects and the difference in the contributions to output voltage
increases as the beam width decreases. For a 40 nm wide beam, the flex-
oelectric and surface effect contributions are 7% and 1% respectively.
While for a width of 15 nm, the difference between the contributions is
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Fig. 9. The variation of ECF for ZnO beam with width for three cases, Piezo-
electricity, Piezoelectricity +Surface effects and Piezoelectricity + Surface ef-
fects + Flexoelectricity.
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Fig. 10. The influence of length scale [, on output voltage for ZnO beam of
width 15nm, for three cases, Piezoelectricity, Piezoelectricity + surface effects
and Piezoelectricity + Surface effects + Flexoelectricity.

higher, the flexoelectric and surface effect contributions are 18% and
7% respectively.

The change in ECF with width of beam is shown in Fig. 9. The pat-
tern is similar to the one obtained for output voltage. The ECF for pure
Piezoelectricity and Piezo + Surface effects for 15nm wide beam are
0.0067 and 0.00728 respectively. While for the same beam width, the
ECF considering Piezo + Surface effects + Flexoelectricity is 0.014. The
percentage contribution of flexoelectricity and surface effects to the total
ECF are 48% and 8% respectively. There is a discrepancy in the percent-
age contribution of flexoelectricity to ECF and output voltage. This is be-
cause the potential due to flexoelectricity reaches its peak near the fixed
end and reduces significantly along the length. So, though the flexoelec-
tric contribution to total ECF is 48%, the contribution of flexoelectricity
to total voltage measured at the top face (y=120nm) is only 18%.

The length scale and in turn strain gradient elasticity is not consid-
ered in this analysis. In order to understand the influence of length scale,
I, on output voltage, the [, value is varied and voltage output consid-
ering different effects is studied. The present analysis shows that an in-
crease in length scale decreases the output piezoelectric voltage. Besides,
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Fig. 11. The Error norm of output voltage for a nano-sized flexoelectric beam
considering geometric nonlinearity.

similar to the previous analysis the surface effects and flexoelectricity
increases output voltage. Fig. 10 shows the variation of output voltage
with length scale for three different cases, (a) piezoelectricity, (b) piezo-
electricity with surface effects and (c) combination of piezoelectricity,
surface effects and flexoelectricity.

5.5. Flexoelectricity and surface effects: geometric nonlinearity

In this section, the flexoelectric response in the nonlinear regime
is studied. The nonlinearity emerges due to large deformation of the
flexoelectric cantilever beam. The flexoelectric beam is assumed to be
made of STO, in addition to flexoelectricity, the surface elasticity of
STO is also considered. The material properties of STO are given in
Table 1. The surface elastic constants of STO are not available in liter-
ature and are assumed to be, Cfl = CZS2 =310 GPa, sz =115 GPa and
Cgs =54 GPa. The beam is subjected to mechanical deformation by a
point load of 10 nN at the free end. The load is applied in increments
of 1 nN. In each increment, the tangent stiffness matrix is determined
and the Newton-Raphson method is adopted to minimize the residual.
Two different beams each of thickness 50 nm and 30 nm respectively are
analysed. The aspect ratio of the beams is fixed as 12. The fixed end of
the cantilever is grounded.

The variation of maximum output voltage with load steps is shown
in Fig. 12. As shown in Fig. 12(a), at the end of ten load steps the volt-
age due to flexoelectricity and surface elasticity for 50 nm thick beam is
7.8 mV. The ratio between nonlinear and linear voltage is 0.9 (i.e.) the
nonlinear voltage deviates from the linear response by 10%. If surface
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effects are not considered, then the final output voltage is 8.5mV. In
case of 30 nm thick beam, as shown in Fig. 12(b), the final output flex-
oelectric voltage is 11 mV and 12mV considering and ignoring surface
effects respectively.

The variation of free end deflection with load steps is shown in
Fig. 13. The free end deflection of 50 nm thick beam after ten load steps
is 68 nm (Fig. 13(a)). The ratio between nonlinear and linear deflection
for a load value of 10nN for 50 nm thick beam is 0.89 (i.e.) a deviation
of nonlinear displacement is 11% from linear displacement. In the ab-
sence of surface effects, the final output deflection of 50 nm thick beam
is 75 nm. For the case of 30 nm thick beam, as shown in Fig. 13(b), the
final deflection is 56 nm and 63.5nm considering and ignoring surface
effects respectively. From Figs. 12 and 13, it is clear that the beam be-
comes stiffer in the presence of surface elasticity, which in turn leads
to reduction in output voltage. In case of 50 nm thick beam, due to sur-
face elasticity the absolute value of final voltage reduces from 8.5mV
to 7.8 mV. While for 30 nm thick beam, the voltage reduction is from
12mV to 11 mV. The variation of energy conversion factor with load
steps is shown in Fig. 16. The rate of increase in ECF with load steps is
higher for a 30 nm beam compared to the 50 nm beam (Aspect ratio =
12). It is to be noted that, in the absence of geometric nonlinearity, the
energy conversion factor is a constant value and remains independent
of the applied loads, whereas the consideration of geometric nonlinear-
ity has led to change in ECF value with load increments. The contour
plot showing the normal strain in x-direction is given in Figs. 14 and
15. Fig. 14 shows that at the first load step, the nonlinear strain terms
are negligible and the Green-Lagrange strain contour and linear strain
contour are quite similar. While the strain contour at the 10th load step
given in Fig. 15 shows that nonlinear terms play significant role in deter-
mining the Green-Lagrange strain. Consequently, the linear strain con-
tour and Green Lagrange strain contours become dissimilar. The studies
performed in this section show that the surface elasticity can reduce the
output flexoelectric voltage. For instance, it is observed that in case of
a 30nm thick beam the reduction in the final voltage is 1 mV due to
surface elastic effects (Fig. 12).

In order to prove the convergence of the numerical method, we need
to determine the error by comparing numerical and analytical solution.
Due to lack of analytical solution, the output voltage obtained in a flex-
oelectric beam of length 1200 nm and height 100 nm for a background
cell distribution of 360X30 is taken as the actual solution. The error
in output voltage for different mesh sizes (coarse to fine) is plotted in
Fig. 11. Fig. 11 shows that the logarithm of error in output voltage de-
creases linearly and the rate of convergence is around 2.

The intrinsic length scale has a negative impact on the flexoelectric
voltage. The Fig. 17 shows the reduction in output voltage with increase
in I from 10nm to 25nm. The influence of different values of C* on
nonlinear output voltage is shown in Fig. 18. The absolute voltage drops
with increase in the value of surface elastic constants. The voltage drops
with increase in C* and rate of fall reduces as C* approaches C. The

Fig. 12. The variation in voltage with load in-
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Fig. 13. The load deflection curve for flexo-
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Fig. 15. The strain contour (Gy,, £, #;;) for flexoelectric beam made of STO
of depth 50 nm at load step 10 (a) Green Lagrange strain (b) Linear strain (c)
Nonlinear part of strain.

variation of output voltage with increase in C* is quadratic for 50 nm
beam and cubic for 30 nm beam.

The surface elastic effects can increase with increase in the surface
area of the beam. As we analyse a two-dimensional model with plane
strain assumption, the length of top and bottom face of the beam can
be increased by modifying the rectangular beam into a tapered beam.
Therefore it is worthwhile to study a tapered beam model with inclined

Fig. 16. The variation in ECF with load increments for flexoelectric beam made
of STO of depth 50 nm and 30 nm (Aspect ratio =12).
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Fig. 17. The variation of output voltage with load step for different values of
ly, for a 50 nm beam.
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Fig. 18. The variation of output voltage at the
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Fig. 19. Tapered flexoelectric beam model.

top and bottom faces and compare their response with the rectangular
beams studied previously (Fig. 19).

Considering an average thickness of 30nm, a tapered cantilever
beam, TB;, of length 360 nm and of depth, d;=40 nm at x=0, d,=20nm
at x=360 nm is subjected to a load increment of 1 nN over ten load steps.
At the tenth load step, the output flexoelectric voltage in TB; reduces
from 15mV to 13 mV due to surface elastic effects as shown in Fig. 20(a).
Secondly, a tapered cantilever beam TB, of length 360 nm and of depth,
d;=45nm at x=0, d,=15nm at x=360nm is considered. The final volt-
age reduces from 12mV to 10.4 mV as shown in Fig. 20(b). In both the
tapered beams TB; and TB, with average thickness of 30 nm, the volt-
age reduces by 13.3% due to surface elastic effects. This is higher than
the reduction of 8.5% (from 11.8mV to 10.8 mV) in 30 nm thick rect-
angular beam. Therefore, as expected the influence of surface effects
increases with increase in surface area of the beam and the negative in-

0.4 0.8 1
m

(®)

0.6

fluence on flexoelectric voltage is higher for a tapered beam compared
to a rectangular beam of same volume.

In summary, the results obtained in this section show that consid-
ering nonlinear terms in strain and gradient of strain, is more essential
as the influence of flexoelectricity on output voltage gets significant in
nanoscale. We conclude that the geometric nonlinearity cannot be ig-
nored if one analyses flexoelectric beams of dimensions of under 100
nanometers when subjected to loads in the range of 10 nNs. It is to be
noted that the flexoelectric material, STO used in this example has a
lesser flexoelectric constant of only 1.4V, while flexoelectric constant
of a dielectric material can even be upto 10V based on the theoretical
upper limit estimated by Kogan et al. [8].

6. Conclusion

A CSRBF based meshfree formulation is presented in this paper to
handle geometric nonlinearity in flexoelectric structures. In addition to
flexoelectricity, the surface effects are also considered in the analysis
of nano-sized two dimensional structures. Flexoelectric beams made of
cubic STO, which is non-piezoelectric and ZnO, which is piezoelectric
are analysed. The meshfree analysis shows that for ZnO, the contribu-
tion of surface effects to the output voltage of a nanosized cantilever
structure (of width 15nm) is smaller compared to the contribution of
flexoelectricity.

The analysis of flexoelectric nanostructures undergoing large defor-
mation shows that the difference between nonlinear and linear flexo-
electric voltage increases with reduction in beam depth. The surface
elastic effects stiffen the beam leading to reduction in output flexoelec-
tric voltage. The influence of surface elasticity is higher in tapered beams
compared to rectangular beams. In future, the presented formulation
will be extended to study nonlinear flexoelectricity under dynamic ex-

0 0 Fig. 20. The variation in voltage with load in-
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citations and the influence of nonlinearity on response bandwidth of
nanosized flexoelectric energy harvesters will be investigated. Besides,

the nonlinear formulation for flexoelectric nanoplates [37,38] will also
be derived.
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Appendix A. Intermediate Steps in the derivation of nonlinear
meshfree formulation for flexoelectricity

The terms G, G, A5G and AS in Eq. (39) are as follows,

1
G= E(Mi’j gy ) (A1)
oG = %(514,-’/» + ou;; + Sy juy j + uy i Suy ;) (A.2)
ASG = %(6uk,iAuk’j + Auy ;0uy ;)
= buy i Auy ; (A3)
S=C:G-¢e-E
AS =C : AG-e-AE (A4)

The terms G, 6G, ASG and S in Eq. (41) are as follows,
~ 1
G = 5(“,',/1( U+ U U U i)
= 1
o6G = 5(614,‘,]-,( + 5uj’,~k + 5uk,,»juk’j + uk,,»jﬁuk’j + 5uk1iuk,j,» + uk,iéuk’ji)

ASG = 1(5uk,,. JAuy o+ Auy Sy + Sug Auy  + AugSuy )

2
= (Suk%,‘jAuk,j + Auk,ijéuk’j
S=-u-E (A.5)
The terms AD, 6E and ASE in Eq. (43) are as follows,
D=e:G+ﬂ§é+x-E
AD =e: AG+pu:AG+k-AE
E; = —¢,i
SE, = —60,
ASE; =0 (A.6)
The terms G°, 6G°*, A6G® and AS® in Eq. (45) are as follows,
1
G’ = S Py +up+ug i )P, (AT)
1
6G° = EPij(aui,j +6u;; + Suy g ; + uy Sy )Py (A.8)
1
ASG* = EPj,-(Suk,,-AukJ + Auy ;6uy ;) Pj;
= Pj;6uy;Auy Py (A.9)
S*=C°:G*
AS® = C* : AG*® (A.10)
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Appendix B. Matrices - nonlinear meshfree formulation for

flexoelectricity

The expressions defining the matrices B, By, Hy, Hy, H,,, Hp, R, R,
Ry, Rp, D, R,, R, and P, are as follows,

Ny 0
B=| 0 Ny, +AH,
_l\fl,y ZVl,x
[ oupx dury
E
A=| 0 a—; 0
Mix owy  ouy
L Jy 0x dy
Ny 0
N 0
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I.x
0 Ny
1;¢ — ]\[],x
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()—Xx 00 0
g
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Til +S£1 T£2+S§2 0 0
R, = TptSh Tt S, . 0 : i 0 i (B.14)
0 0 TS TS,
i 0 0 sz + sz 1;2 + S;z
P, Py 0 0
P, = Py Pp O 0 (B.15)
0 0 Py Py
0 0 Py Py
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